	Program Name:
	Department of Energy I-MANAGE Program
	

	Project ID:
	I-MANAGE Program 1.1 STARS Project
	

	Project Manager:
	Laura Kramer
	

	Program Mgr:
	Chris Simpson
	Doc ID:
	DV0512

APP132 – DETAILED TEST PLAN:

Conversion Test 2 - FY2004 YE/FY2005 Nov STARS Conversion

Department of Energy I-MANAGE Program - STARS Project
	Deliverable ID:
	APP132 – DETAILED TEST PLAN: Conversion Test 2 - FY2004 YE/FY2005 Nov STARS Conversion

	Version number:
	1.03

	Draft as of:
	1 December 2004

	Printed on:
	1 December 2004

	Author:
	Mark Tulip

Mark.tulip@hq.doe.gov
301-903-3812

	Owner:
	Laura Kramer, STARS Project Manager

Status of Document

 FORMCHECKBOX

Draft

 FORMCHECKBOX

Delivered

 FORMCHECKBOX

Accepted

Document information

Document source

This document is maintained as an online document. Contact the author for the latest version.

Revision history

	Version number
	Date
	Summary of changes
	Revised By

	1.01
	25 Nov 04
	Initial version of test plan
	Mark Tulip

	1.02
	29 Nov 04
	Revised by Federal DEV Team Lead
	Bryan Long

	1.03
	01 Dec 04
	Reviewed / Revised by Team IBM Project Executive
	Don A. Cox

Approvals
The following people have approved this document. (Sign below name)

	Name
	Function

	Laura Kramer
	DOE I-MANAGE Stars Project Manager

	Signature
	Date:

	
	

	Don Cox
	Team IBM I-MANAGE Project Executive

	Signature:
	Date:

Distribution

This document has been distributed to:

	Name
	Function

	
	

	
	

1.1. Test Objectives

The test objectives listed within this document are in accordance with the principles outlined in the ENG354 Mid-Year Conversion Strategy. As such, this conversion test is to validate the following data conversions:

· General Ledger (GL) data from DISCAS and MARS into STARS for the October and November Fiscal Year 2005 period

· Vendors, employees, and customers

· Sub-ledger data for Purchasing (PO) and Accounts Payable (AP), both Fiscal Year 2004 ending balances for cumulative reporting, and Fiscal Year 2005 November cumulative balances.

· Accounts Receivable (AR) and Fixed Assets (FA) Fiscal Year 2005 November balances

The execution of the conversion is comprised of the following steps:

· Extracting the legacy data from DISCAS and MARS (All)

· Importing the data into staging tables (All)

· Cross walking the data into the STARS format, (All)

· Importing the journals into Oracle (GL)

· Posting the journal entries (GL)

· Creating Bank Accounts (Vendor)

· Creating Vendors in Oracle (Vendor)

· Creating Vendor Sites in Oracle (Vendor)

· Creating Vendors for each Employee in Oracle (Employee)

· Creating Vendor Sites for each Employee in Oracle (Employee)

· Creating HR records for each Employee in Oracle (Employee)

· Executing the DOEinfo – Employee interface to update employee information (Employee)

· Populate the required fields necessary to get the Revenue and Receivable CCID values (Customers)

· Loading AR Customer interface tables and running Standard “Customer Interface” to create Customers in Oracle tables (Customers)

· Grouping and pre-validating the DISCAS data (PO/AP/AR/FA)

· Creating PO and Receipt Transaction Codes (PO)

· Loading PO interface tables and running standard PO import utility to create POs in Oracle tables (PO)

· Approving the newly created POs through ‘PO Approval Workflow’ process (PO)

· Loading Receiving interface tables and running Standard “Receiving Transaction Processor” to create Receipts in Oracle tables (PO)

· Loading invoices into AP Invoice interface tables and breaking them into appropriate batch sizes before handling over to DCT for invoice creations in Oracle from interface tables (AP)

· Loading the Receivables Invoices and Credit Memos to AR Interface tables (AR)

· Through Autoinvoice, create AR Transactions from Interface table (AR)

· Process GL Advances through Receipt APIs and AR Interface table (AR)

· Loading Assets into Oracle (FA)

· Running of Depreciation (FA)

· Extraction and posting of Fiscal Year 2004 ending cumulative balances in PO and AP to GL period 13 for cumulative reporting. (PO/AP)

· Logging any entries that fail anywhere throughout the process.

The conversion test described within this document ensures each of these steps as well as the overall conversion is executed properly.

1.2. Functions/Features to be Tested

The functions and features to be tested during this process correspond directly to the test objectives listed in section 1.1. These are as follows:

· The data load of legacy data files into custom tables

· The cross walk of data from the legacy system values to the new STARS values.

· The data load into the standard GL interface import tables via Oracle’s standard gl_interface.

· Running Oracle’s standard Journal Import process to create Journal entries, and then posting the data into the correct conversion period via Oracle’s standard posting process.

· Inserting Bank Accounts (Vendors)

· Inserting a vendor and vendor site record for each vendor (Vendors)

· Inserting a vendor and vendor site record for each employee (Employee)

· Execution of the create_employee, create_person_address, and create_phone APIs for each employee (Employee)

· Execution of the Doeinfo – Employee interface to update employee information unavailable from DISCAS (Employee)

· Valid Revenue and Receivable CCIDs are created and assigned to debtor records (Customers)

· Customers are created in Oracle from interface tables (Customers)

· Valid Transaction Codes are assigned to DISCAS POs (PO)

· POs are created and approved (PO)

· Journal Entries are created by ensuring successful run of concurrent program called ‘Program- Create Journals’ (PO)

· Valid Transaction Codes are assigned to STARS Receipts (PO)

· Receipts are created in Oracle from the interface tables (PO)

· Invoices are created in Oracle from the interface tables (AP)

· The data load into the AR Interface table and to Oracle Standard Receivables tables via Oracle’s Autoinvoice and APIs (AR)

· Inserting of assets (FA)

· Running Depreciation in Oracle (FA)

· Posting of sub-ledger transactions into GL (PO/AP/AR/FA)

1.3. Work Items

The detailed test plans for each conversion are attached at the end of this document.

1.4. Entry and Exit Criteria for Level

Entry Criteria

· Oracle Applications GL, PO, AP, AR, FA setups

· Legacy data files extracted

· Conversion program and SQL*Loader ctl files created

· STARS baseline instance available

· Data mapping and Crosswalk tables complete

Exit Criteria

· GL journals entered and posted in Oracle

· Vendors are created in Oracle

· Employees are created in Oracle

· Employee information updated from DOEinfo

· Customers are created in Oracle

· POs are created and approved in Oracle

· PO Receipts are created in Oracle

· AP Invoices are created in Oracle

· AR Invoices, Credit Memos and Receipts are created in Oracle

· Assets are created in Oracle

· Depreciation executed

· Error logs reviewed

· All entries not loaded due to errors identified and handled

· Reconciliation routines run and output confirmed

· Comparison of the MARS Trial Balance with the STARS Trial Balance for each Fund, Allottee, and SGL combination identified by the Data Reconciliation Team

1.5. Testing Tools and Techniques

Tools that will be used during the Conversion process are:

· Oracle SQL*Loader – for loading of the data files into the staging tables

· TOAD (Tools for Oracle Application Developers) – for running queries during the staging process.

· Oracle SQL*Plus – for executing the procedures from the gl_conv_pkg, c_po_vendor_pkg, c_emp_pkg, c_ar_customer, c_po_convert_rollup, c_ap_convert packages, c_ar_convert, and c_fa_conv.pkg conversion packages, and running various conversion and test sql scripts.

· Windows CMD Line – used for splitting the GL source files into 8 sub-files, and for executing the sql*loader program from sql*plus to load data into the staging tables.

1.6. Test Schedule

The following presents a summary level list of tasks with each task’s corresponding duration, start date, and finish date. This is followed by details surrounding the actual execution of the conversion program.

	Task
	Duration
	Start Date
	Finish Date

	Conversion Test 2 - FY04 / Nov ME FY2005 STARS Conversion
	26 days
	11/22/2004
	12/30/2004

	Publish Conversion Test 2 Plan / Success Criteria
	5 days
	11/22/2004
	11/30/2004

	Pre-Conversion Instance Configuration
	5 days
	12/01/2004
	12/07/2004

	Receive DISCAS / MARS Nov 04 Extract
	0 days
	12/07/2004
	12/07/2004

	Execute GL to GL Conversion
	2 days
	12/07/2004
	12/08/2004

	Execute Vendor Conversion
	2 days
	12/08/2004
	12/09/2004

	Execute Employee Conversion
	2 days
	12/08/2004
	12/09/2004

	Execute Employee Interface
	2 days
	12/10/2004
	12/13/2004

	Execute AR Customer Conversion
	2 days
	12/08/2004
	12/09/2004

	Execute PO / AP / AR / FA Conversion
	5 days
	12/14/2004
	12/20/2004

	Execute Post Conversion Activities
	2 days
	12/21/2004
	12/22/2004

	Conversion Test 2 Reconciliation Support / Issue Resolution
	5 days
	12/23/2004
	12/30/2004

Tuesday, November 30, 2004

· STARS instance turned over for conversion of the instance

· STARS apps and custom passwords given

· Access to GL, PO, AP, AR, FA, Sysadmin, and Applications Admin given thru the applications

Wednesday, December 1, 2004 – Tuesday December 7, 2004

· Confirm setup and technical installation follows baseline configuration

· Confirm values setup is accurate and complete

Tuesday, December 7, 2004

· Setup static DISCAS and MARS databases and extract data

Wednesday, December 8, 2004

· Create the database objects in the instance (tables, views, grants, sequences, packages, the common routines program)

· Receive the data extract files from DISCAS and MARS

· Load the GL, vendor, employee, and customer extract files into the staging tables

· Send out query of gl_code_combinations that did not crosswalk

· Load the entries thru the conversion program into the gl_interface table

· Create Vendors

· Create Vendor Sites

· Execute Create_employee, create_person_address and create_phone APIs

· Customer Category, Customer Class, Communication Type and Customer Profile setups are verified

· Duplicate Debtors and Orders are checked

· Extract data is loaded into AR Customer Interface tables

· ‘Customer Interface is run to create customers in Oracle from Interface tables

Thursday, December 9, 2004

· Execute the GL Journal Import program

· Change the GL Period, and post the Journals in the applications

· Review Journals and obtain sign off from the DCT team

· Review Vendor records and obtain sign off from the DCT team

· Review Customer records and obtain sign off from the DCT team

Friday, December 10, 2004 – Monday, December 13, 2004

· Execute the DOEinfo – Employee interface program.

· Review Employee records and obtain sign off from the DCT team

Tuesday, December 14, 2004

· Extracted PO, AP, FA data is loaded into custom staging tables

· Create Assets (FA)

· Run Depreciation (FA)

Wednesday, December 15, 2004 – Friday, December 17, 2004

· Review Assets records and obtain sign off from the DCT team (FA)

· Required Default spreadsheet and PCS datasheet are provided by DCT (PO)

· Accounting segments and Transactions codes are cross walked and verified by DCT. Null ID Number is verified and default provided by DCT. If required, missing AFF segment values are created by DCT

· CCIDS are created and assigned to rolled up PO data

· PO Interface tables are loaded and batch IDs assigned

· POs are created in Oracle usgin ‘Import Standard Purchase Order’ program

· Newly created POs are approved using ‘Workflow Background Process”

· Any POs stuck in ‘IN PROCESS’ status are investigated to make sure that all POs are approved

· Concurrent program “Program – Create Journals” is run under DOE GL Superuser responsibility (PO)

Saturday, December 18, 2004

· Main AP package “c_ap_convert” is created and compiled in new instance

· All AP setup including GL and Purchasing periods are verified to be existing, valid and open

· Receipts are loaded from custom.c_po_convert_rollup table to Receipts Interface tables (PO)

· Default Location called “CONVERSION’ is created through ‘DOE Application Admin” responsibility

· Under the same responsibility, Location/Inventory Orgs are associated

· Standard program “Receiving Transaction Processor’ is run to create Receipts in Oracle from Receiving Interface tables (PO)

· Invoices sitting in c_po_convert_rollup tables are verified by executing verifyinvoices procedure in c_ap_convert package (AP)

· Invoices are loaded into AP Interface tables (AP)

· Invoices are grouped based on the number of invoices and distributions (AP)

· DCT is informed of the group IDs created in interface tables. DCT informs DEV team when they have created invoices for the group IDs sent to them. (AP)

Sunday, December 19, 2004 – Monday, December 20, 2004

· AR Extract data loaded into custom staging tables

· Legacy segments are cross walked and any missing segments created by DCT (AR)

· SGL accounts are cross walked based on BSC codes as provided by DCT (AR)

· Code Combinations are created and assigned to staged receivables data (AR)

· Transaction flexfields are created and verified (AR)

· Conversion source is created and verified (AR)

· Transaction Types are verified to be setup by DCT (AR)

· GL date updated in the package and confirmed with DCT (AR)

· GL period is verified to be valid and open (AR)

· Invoices and Credit Memos are loaded into AR interface tables (AR)

· Invoices and Credit Memos are created in Oracle from Interface tables using “Autoinvoice” utility (AR)

· Credit Memos are created to close debit items created for Finance Charges (AR)

· GL Advances data are cross walked, SGL segments assigned based on BSC codes and GL CCIDS created and assigned to grouped GL Advances transactions. (AR)

· On-Account and Unidentified Receipts are created using AR APIs (AR)

· Invoices are created for 39xx debit balances using Autoinvoice (AR)

· Review PO, AP, AR records and obtain sign off from the DCT team (PO/AP/AR)

Tuesday, December 21, 2004 – Wednesday, December 22, 2004

· DCT executes Post-Conversion activities

Thursday, December 23, 2004 – Thursday, December 30, 2004

· Reconcile STARS converted data to DISCAS and MARS

· Identify and address conversion/reconciliation issues

1.7. Test Environment Requirements

The following are requirements of the testing environment.

· In order to execute conversion testing, the baseline instance must be established along with the application login and passwords to the apps and custom schemas.

· To execute the conversion and conduct appropriate unit testing, the user will need DOE GL Superuser, DOE Payables SuperUser, DOE Purchasing Superuser, DOE AR Superuser, DOE PR and PO entries with Processes, DOE PO Application Administrator, DOE AR Superuser, DOE FA SuperUser, and Sysadmin responsibilities.

· If errors are discovered prior to running Oracle’s standard Journal Import, Import Standard Purchase Orders, Receiving Transaction Processor, or Autoinvoice processes, the data in the staging tables will be deleted, the errors corrected, and the data load re-executed. If errors are discovered after running the Journal Import process, the instance will need to be refreshed by the IT Team back to the baseline. At that point, the errors will be corrected and the data load re-executed.

1.8. Risks and Contingencies

1.8.1. Legacy System Data

· Risk - Extract data files not available

· Contingency – None. This data is necessary for implementation. However, the DEV Team will work with the legacy system owners where possible to resolve any issues with extracting the data. This task can be delayed if necessary since it is only needs to be accomplished just prior to go-live. Therefore, the impact of the data files being unavailable at the scheduled start date of this task is minimal.

1.8.2. STRS Instance

· Risk - STRS instance not available

· Contingency – This task can be accomplished by using another instance. The impact of this is a schedule delay of this task while the IT Team readies another instance of suitable proportions. The impact of the realization of this risk would be minimal, assuming another instance could be made available.

1.8.3. Mapping

· Risk - Crosswalk data not correctly mapped

· Contingency – There is ample time to correct the mapping since the converted data is truly not needed until just prior to implementation. Therefore, the mapping can be corrected and the conversion re-run, if necessary. Another option is to correct the entries after they have been created in STARS.

Appendix A:
Detailed Test Plans
A.1
General Ledger Conversion Test Plan

	Unit Testing Step
	Conversion Step
	Testing Step
	Expected Results
	Actual Results

	1.1.3
	Verify that view c_aff_crosswalk_v exists in the CUSTOM schema
	Execute the following command as custom:

SQL> desc custom. c_aff_crosswalk_v
	Description of the view is displayed to verify that the view was created.
	

	1.1.4
	Ensure that the package apps.c_common_routines_pkg is valid
	Execute the following query as apps:

SQL> select distinct(status)

from dba_objects

where object_name like 'C_COMMON_ROUTINES_PKG'
and owner = 'APPS'
	Should return a value of ‘VALID’
	

	1.1.5
	Ensure that the ‘DOE GL Superuser’ exists
	Log into the applications, and verify that the responsibility exists.
	Responsibility is setup
	

	1.1.6
	Ensure that the period is open in the applications that the conversion is going to occur. Ex. SEP-04.

	Log into ‘DOE GL Superuser’, navigate to Setup: Open/Close,

verify that the conversion period‘SEP-04’ and ‘SEPADJ1-04’ are Open
	Period ‘SEPADJ1-04’ is ‘Open’;

‘SEP-04’ is ‘Open’
	

	1.17
	Verify DFFs are set up in the instance for CID, Asset_type, Asset_status, OPI, Environment Liability Type, and Trading Partner. All DFFs should be set up to be optional.
	Log into ‘DOE GL Superuser’, navigate to Setup: Financials: Flexfields: Descriptive: Segments,

Query up the ‘Enter Journals: Lines’ DFF, click on the segments button under global data elements, and verify that they are setup.
	All the DFF’s are setup and they are set to optional
	

	1.18
	Verify AutoPost criteria exists and is set up to automatically post all batches created by Journal Import
	Log into ‘DOE GL Superuser’, navigate to Setup: Journal: Autopost,

Query all records
	There are records setup, and they are set to automatically post all batches
	

	1.2
	Remove all Summary Templates

Log into ‘DOE GL Superuser’, navigate to Setup: Accounts: Summary

Query all templates

Delete all templates using the red X

Save records
	Log into ‘DOE GL Superuser’, navigate to Setup: Accounts: Summary

Query all templates

	Query should return with no records
	

	1.3
	Download from PVCS all of the files in the CustomSQL\Conversions\GL directory. Put them into a working directory, for example c:\temp
	On your computer, open windows explorer. Navigate to c:\temp, verify files are in the directory
	All the files from the PVCS directory are in the directory c:\temp:

c_cre_alo_stage.sql

c_cre_cap_stage.sql

c_cre_oro_stage.sql

c_del_gl_stage.sql

c_gl_conv.alo1

c_gl_conv.alo2

c_gl_conv.alo3

c_gl_conv.alo4

c_gl_conv.alo5

c_gl_conv.alo6

c_gl_conv.alo7

c_gl_conv.alo8

c_gl_conv.cap1

c_gl_conv.cap2

c_gl_conv.cap3

c_gl_conv.cap4

c_gl_conv.cap5

c_gl_conv.cap6

c_gl_conv.cap7

c_gl_conv.cap8

c_gl_conv.grt

c_gl_conv.idx

c_gl_conv.oro1

c_gl_conv.oro2

c_gl_conv.oro3

c_gl_conv.oro4

c_gl_conv.oro5

c_gl_conv.oro6

c_gl_conv.oro7

c_gl_conv.oro8

c_gl_conv.pkg

c_gl_conv.seq

c_gl_conv.tab

c_gl_conv.vw

c_gl_conv_mars.ctl

c_upd_alo_conv_status.sql

c_upd_cap_conv_status.sql

c_upd_mars_conv_status.sql

c_upd_oro_conv_status.sql

determine_org_ids.sql

load_gl_discas.bat

load_gl_mars.bat

split_discas_data.bat

split.exe

SPLIT60I.DOC

c_gl_segment_balancing.sql
	1.3

A.2
Vendor Conversion Test Plan
	Unit Testing Step
	Conversion Step
	Testing Step
	Expected Results
	Actual Results

	1
	Supplier auto-numbering should be turned on, with a ‘type’ of ‘NUMERIC’.
	Log into ‘DOE Purchasing Superuser’, navigate to Setup: Organizations: Financial Options: Supplier Entry Tab
	Supplier auto-numbering is set to ‘Numbeic’
	

	2
	Before loading ensure that the values of ACCTS_PAY_CODE_COMBINATION_ID, PREPAY_CODE_COMBINATION_ID, FUTURE_DATED_PAYMENT_CCID are correctly set. These values should be provided to the Dev team by the AP team prior to starting the Vendor conversion.
	Verify with the AP Team the values, and then put the values in the c_emp_pkg constants.
	In the code:

const_accts_pay_ccid_nonfed

 constant number := 1062;

const_prepay_ccid_nonfed

 constant number := 1062; const_future_dt_pymt_ccid

 constant number := NULL;
	

	3
	Ensure that the table c_common_ic_cids exists and is populated with data

	Run the following query to verify:

select count(*) from custom.c_common_ic_cids
	Returns ‘43’
	

	4
	Although the Vendor conversion is technically run before the Employee conversion, a requirement was added to check Vendor and Employee data for existence of ABA numbers when loading the Bank Branches. For this reason, the Employee data actually needs to be staged before the Vendor package (c_po_vendor) can be compiled
	Run Steps 1.1 thru 13 in the Employee conversion document
	Employee conversion programs will be created, and employee data staged.
	

	5
	Download from PVCS all of the files in the CustomSQL\Conversions\Vendor directory. Put them into a working directory, for example c:\temp
	On your computer, open windows explorer. Navigate to c:\temp, verify files are in the directory
	All the files from the PVCS directory are in the directory c:\temp:

c_po_vendor.alz

c_po_vendor.grt

c_po_vendor.idx

c_po_vendor.pkg

c_po_vendor.seq

c_po_vendor.tab

c_trad_part_lookup.ctl

c_trad_part_lookup.tab

fod_banks.ctl

load_fod_banks.bat

load_trad_part.bat

load_vendors.bat

TIN_different_Name.sql

uat_vendor_errors.sql

vendor_terms_used.sql

Vendor Conversion Setup.doc

vendors.ctl
	

	5
	Run the following script to create the staging tables

As custom, execute the following script:

SQL>@c:\temp\c_po_vendor.tab
	Execute the following to verify all 4 tables were created:

SQL> desc c_vendors
SQL> desc c_vendors_temp
SQL> desc c_fod_banks

SQL> desc c_vendor_errors
	All 4 tables were described verifying that they were created.
	

	6
	Check to see if the Trading Partner lookup table is created
	Execute the following to verify all 4 tables were created:

SQL> desc c_trad_part_lookup

	Table was described to verify that it was created. If not, follow the instructions in Appendix A, in the Vendor Conversion Setup.doc
	

	7
	Run the following script to create sequences.

As custom, execute the following script:

SQL>@c:\temp\ c_po_vendor.seq
	Execute the following to verify 2 sequences were created:

SQL> select c_vendors_s.nextval from dual

SQL> select c_vendors_dup_city_s.nextval from dual

SQL> select c_fod_banks_s.nextval from dual

SQL> select c_vendor_errors_s.nextval from dual
	Values were returned for all 4 calls

First time run, both of these should return = ‘1’.
	

	8
	Run the following script to create indexes for the staging tables

As custom, execute the following script:

SQL>@c:\temp\c_po_vendor.idx
	Execute the following to verify 4 indexes were created:

SQL> select count(*), status

from all_indexes

where upper(owner) = 'CUSTOM'

and lower(index_name) in
('c_vendors_name_idx’,

‘c_vendors_fmt_tin_idx’,

‘c_vendors_vendor_id_idx’,

‘c_vendors_temp_fmt_tin_idx’)
group by status
	‘4’ and ‘Valid’ should be returned
	

	9
	Run the following script to grant permissions to apps for the custom tables

As apps, execute the following script:

SQL>@c:\temp\c_po_vendor.grt
	Execute the following query as apps:SQL> select count(*) from all_tab_privswhere table_name in (‘c_vendors_s’,’c_vendors_dup_city_s’,

’c_fod_banks_s’,’c_vendor_errors_s’,

’c_vendors’,’c_vendors_temp’,’c_fod_

banks’,’c_vendor_errors’)
	‘16’ should be returned
	

	10
	Run the following script to compile the package

As apps, execute the following script:

SQL>@c:\temp\c_po_vendor.pkg
	Execute the following query as apps:

SQL> select distinct(status)

from dba_objects

where object_name = 'C_PO_VENDOR’'
and owner = 'APPS'

	Should return a value of ‘VALID’
	

	11
	Make sure that the names of the DISCAS extract data files are flpo011_<org_id>.dat where <org_id> represents the service center (domain values are ‘cap’, ‘alo’, or ‘oro’) and DOEinfo-Banks.dat
	On your computer, open windows explorer. Navigate to c:\temp\sourcedata. Verify the files.

	There should be 4 files:

flpo011_alo.dat

flpo011_cap.dat

flpo011_oro.dat

DOEinfo-Banks.dat
	

	12
	Ensure that there exists a ‘logs’ folder under the working directory (c:\temp\logs)
	On your computer, open windows explorer. Navigate to c:\temp\logs, verify directory
	Directory exists
	

	13
	Stage the fod_banks data files.

Run the following command line:

C:\temp> load_fod_banks.bat custom <password> <instance> c:\temp

	Script generates a log file called c:\temp\logs\fod_banks.log
	Verify that no errors occurred while loading the data into the staging tables from the log file

Near the bottom of the log file verify that it says ‘0 rows not loaded due to data errors’
	

	14
	Stage the DISCAS vendor data files.

Run the following command line 3 times:

C:\temp> load_vendor.bat custom <password> <instance> c:\temp <org_id_suffix>

The org_id_suffix is cap, oro, and alo.

	Script generates a log file called c:\temp\logs\vendor_<org_id_suffix>.log
	Verify that no errors occurred while loading the data into the staging tables from the log file

Near the bottom of the log file verify that it says ‘0 rows not loaded due to data errors’

NOTE that at this time some of the extract data gets filtered out, and not included in the staging area for conversion. Those records with a RECORD_STATE of ‘RETIRED’ are not staged to c_vendors and are reflected in the log as ‘failing all WHEN clauses’.
	

	15
	Execute the following script to load AP Bank Branches

SQL> exec c_po_vendor.load_bank_branches

	Run the procedure
	Procedure completes successfully

The loading of AP_BANK_BRANCHES involves error checking, and then two insert statements with one COMMIT at the end. The error checking produces c_vendor_errors records and sets the c_fod_banks status field to ‘E’ if there are duplicate bank ABA numbers OR if the ABA number does not exist in the Vendor/Employee extract data. See below for c_vendor_errors table description.

	

	16
	Execute the following to ensure that any null extract org_id’s are populated in the staging table

SQL> exec c_po_vendor.upd_null_org_id

	Run the procedure
	Procedure completes successfully
	

	17
	Validate the DISCAS Vendor data

SQL>exec c_hr_emp.validate_data

	Run the procedure
	Procedure completes successfully

Staging table c_vendors contains three status fields called vendor_status, site_status, and acct_status. Possible values for these fields are (U)nprocessed, (P)rocessed, and (E)rror. In addition, the acct_status field can temporarily hold a value of (N)ew to indicate that the ABA number in DUNS-MM data did not exist in Treasury FOD data, and will require the insert of new Bank Branch and Bank Account data. The vendor_status field can temporarily hold an ‘A’ value to indicate additional records that the PO Conversion adds to the c_vendors staging table (as a separate process). The ‘E’ status in c_vendors can be cross-referenced to the number of records in the c_vendor_errors table. The default values of these fields are ‘U’, and from there they can go to ‘P’, ‘E’, or ‘N’.

	

	18
	Execute the following script to ensure that a unique Vendor Name is set for each Vendor to be loaded

SQL> exec c_po_vendor.upd_unique_name

	Run the procedure
	Procedure completes successfully
	

	19
	Execute the following to remove dashes in the account number field, in order to facilitate the matching of tfcs_acct when setting the multi_assignments_flag in ap_bank_accounts_all

SQL>exec c_po_vendor.remove_acct_dash

	Run the procedure
	Procedure completes successfully
	

	20
	Load the PO_VENDORS table

SQL>exec c_po_vendor.create_po_vendor

	Run the procedure to create the vendors.

Run the following 2 queries when it completes.

Select count(1)

From c_vendors

Where vendor_status = ‘P’

And

Select count(1)

From po_vendors

	Procedure completes successfully

 The 2nd count should be equal to the first count plus any vendors in the tables before the conversion is executed.
	

	21
	Load the tables PO_VENDOR_SITES_ALL, AP_BANK_BRANCHES, AP_BANK_ACCOUNTS_ALL, and AP_BANK_ACCOUNT_USES_ALL

SQL>exec c_po_vendor.create_acct_sites

Note that the AP Bank Account tables are only loaded if an ABA number is present in the DUNS-MM data AND if the site being created is not a ‘Purchasing-only’ site

	Run the procedure to create the vendors.

Run the following 2 queries when it completes.

Select count(1)

From c_vendors

Where site_status = ‘P’

And

Select count(1)

From po_vendor_sites_all

	Procedure completes successfully

 The 2nd count should be equal to the first count plus any vendor sites in the tables before the conversion is executed.
	

	22
	Load the Bank Branches that were not in Treasury FOD data, as well as corresponding Bank Account data

SQL>exec c_po_vendor.load_branches_from_vendor

	Run this procedure to create the bank branches

This procedure loads Bank information using only the DUNS-MM vendor data
	Procedure completes successfully

The loading of AP_BANK_BRANCHES involves error checking, and then two insert statements with one COMMIT at the end. The error checking produces c_vendor_errors records and sets the c_fod_banks status field to ‘E’ if there are duplicate bank ABA numbers OR if the ABA number does not exist in the Vendor/Employee extract data. See below for c_vendor_errors table description.

	

	23
	Log into ‘DOE AP Inquiry’, navigate to Suppliers Inquiry.

Query vendors.
	Review Vendors to see if they have been imported correctly.
	Vendors should be loaded into the system
	

A.3
Employee Conversion Test Plan

	Unit Testing Step
	Conversion Step
	Testing Step
	Expected Results
	Actual Results

	1
	Supplier auto-numbering should be turned on, with a ‘type’ of ‘NUMERIC’.
	Log into ‘DOE Purchasing Superuser’, navigate to Setup: Organizations: Financial Options: Supplier Entry Tab
	Supplier auto-numbering is set to ‘Numbeic’
	

	2
	Before loading ensure that the values of ACCTS_PAY_CODE_COMBINATION_ID, PREPAY_CODE_COMBINATION_ID, FUTURE_DATED_PAYMENT_CCID are correctly set. These values should be provided to the Dev team by the AP team prior to starting the Vendor conversion.
	Verify with the AP Team the values, and then put the values in the c_emp_pkg constants.
	In the code:

const_accts_pay_ccid_nonfed

 constant number := 1062;

const_prepay_ccid_nonfed

 constant number := 1062; const_future_dt_pymt_ccid

 constant number := NULL;
	

	3
	The profile setting PA: Licensed to Use Project Resource Management is set to ‘NO’
	Log into ‘Sysadmin’, navigate to Profile: System. Query up ‘ PA: Licensed to Use Project Resource Management’
	Value set to ‘N’
	

	4
	Download from PVCS all of the files in the CustomSQL\Conversions\Employee directory. Put them into a working directory, for example c:\temp
	On your computer, open windows explorer. Navigate to c:\temp, verify files are in the directory
	All the files from the PVCS directory are in the directory c:\temp:

c_hr_emp.alz

c_hr_emp.grt

c_hr_emp.idx

c_hr_emp.pkg

c_hr_emp.seq

c_hr_emp.tab

employee_orgs.ctl

employee.alo

employee.cap

employee.oro

Employee Conversion Setup.doc

load_emp_orgs.bat

load_employee.bat

uat_emp_errors.sql

	

	5
	Run the following script to create the staging tables

As custom, execute the following script:

SQL>@c:\temp\c_hr_emp.tab
	Execute the following to verify all 3 tables were created:

SQL> desc c_employee

SQL> desc c_emp_orgs

SQL> desc c_employee_errors
	All 3 tables were described verifying that they were created.
	

	6
	Run the following script to create sequences.

As custom, execute the following script:

SQL>@c:\temp\ c_hr_emp.seq
	Execute the following to verify 2 sequences were created:

SQL> select c_employee_s.nextval from dual

SQL> select c_employee_error_s.nextval from dual
	Values were returned for both calls

First time run, both of these should return = ‘1’.
	

	7
	Make sure that the names of the DISCAS extract data files are flhr010_<org_id>.dat where <org_id> represents the service center (domain values are ‘cap’, ‘alo’, or ‘oro’)
	On your computer, open windows explorer. Navigate to c:\temp\sourcedata. Verify the files.

	There should be 3 files:

flhr010_alo.dat

flhr010_cap.dat

flhr010_oro.dat
	

	8
	Locate the spreadsheet of Org_code crosswalk values and save it to the working directory in the ‘sourcedata’ folder

	On your computer, open windows explorer. Navigate to c:\temp\sourcedata. Verify the file.

	There should be 1 file:

emp_orgs.csv
	

	9
	Ensure that there exists a ‘logs’ folder under the working directory (c:\temp\logs)
	On your computer, open windows explorer. Navigate to c:\temp\logs, verify directory
	Directory exists
	

	10
	Stage the org_code crosswalk data files.

Run the following command line:

C:\temp> load_emp_ords.bat custom <password> <instance> c:\temp

	Script generates a log file called c:\temp\logs\emp_orgs.log
	Verify that no errors occurred while loading the data into the staging tables from the log file

Near the bottom of the log file verify that it says ‘0 rows not loaded due to data errors’
	

	11
	Stage the DISCAS employee data files.

Run the following command line 3 times:

C:\temp> load_employee.bat custom <password> <instance> c:\temp <org_id_suffix>

The org_id_suffix is cap, oro, and alo.

	Script generates a log file called c:\temp\logs\employee_<org_id_suffix>.log
	Verify that no errors occurred while loading the data into the staging tables from the log file

Near the bottom of the log file verify that it says ‘0 rows not loaded due to data errors’
	

	12
	Run the following script to create indexes for the staging tables

As custom, execute the following script:

SQL>@c:\temp\c_hr_emp.idx
	Execute the following to verify 1 indexes were created:

SQL> select count(*), status

from all_indexes

where upper(owner) = 'CUSTOM'

and lower(index_name) in
('c_employee_ssn_idx’)
group by status
	‘1’ and ‘Valid’ should be returned
	

	13
	Run the following script to grant permissions to apps for the custom tables

As apps, execute the following script:

SQL>@c:\temp\c_hr_emp.grt
	Execute the following query as apps:

SQL> select count(*)

from all_tab_privs

where table_name in (‘c_employee_s’,’c_employee_error_s’

,’c_employee’,’c_employee_errors’,’c_emp_orgs’)
	‘10’ should be returned
	

	14
	Run the following script to compile the package

As apps, execute the following script:

SQL>@c:\temp\c_hr_emp.pkg
	Execute the following query as apps:

SQL> select distinct(status)

from dba_objects

where object_name = 'C_HR_EMP'
and owner = 'APPS'

	Should return a value of ‘VALID’
	

	15
	Execute the following script to ensure that a unique Vendor Name is set for each Employee to be loaded

SQL> exec c_hr_emp.upd_name
	Run the procedure
	Procedure completes successfully
	

	16
	Execute the following script to populate the formatted field_office value using the Org_code lookup table

SQL> exec c_hr_emp.upd_field_office

	Run the procedure
	Procedure completes successfully
	

	17
	Validate the DISCAS Employee data

SQL>exec c_hr_emp.validate_data

	Run the procedure
	· Staging table c_employee contains four status fields called vendor_status, site_status, acct_status, and api_status. Possible values for these fields are (U)nprocessed, (P)rocessed, (E)rror, and (D)uplicate formatted TIN. The default values of these fields are ‘U’, and from there they can go to ‘P’ or ‘E’. The ‘E’ status in c_employee can be cross-referenced to the number of records in the c_employee_errors table. If an SSN is found that already exists in po_vendors table as a formatted TIN number, then this record is marked as a (D)uplicate, but no error is recorded. In this case, no po_vendors, sites, or bank records are created, but the Employee API is called. In addition, the po_vendors and po_vendor_sites_all records that have the formatted TIN matching the SSN in Employees, are updated to make them ‘look’ like they were originally entered by the Employee conversion.

	

	18
	Execute the following to remove dashes in the account number field, in order to facilitate the matching of tfcs_acct when setting the multi_assignments_flag in ap_bank_accounts_all

SQL>exec c_hr_emp.remove_acct_dash

	Run the procedure
	Procedure completes successfully
	

	19
	Load the PO_VENDORS table

SQL>exec c_hr_emp.create_emp_po_vendor

	Run the procedure to create the vendors.

Run the following 2 queries when it completes.

Select count(1)

From c_employee

Where vendor_status = ‘P’

And

Select count(1)

From po_vendors

	Procedure completes successfully

 The 2nd count should be equal to the first count plus any vendors in the tables before the conversion is executed.
	

	20
	Load the tables PO_VENDOR_SITES_ALL, AP_BANK_BRANCHES, AP_BANK_ACCOUNTS_ALL, and AP_BANK_ACCOUNT_USES_ALL

SQL>exec c_hr_emp.create_emp_acct_sites

Note that the AP Bank Account tables are only loaded if an ABA number is present in the DISCAS Employee data

Note that the AP_BANK_BRANCHES table is only loaded if the ABA number is present in the DISCAS Employee data, but does not already exist in the AP_BANK_BRANCHES table (hence the Vendor Conversion prerequisite since Vendor conversion initially populates AP_BANK_BRANCHES)

	Run the procedure to create the vendors.

Run the following 2 queries when it completes.

Select count(1)

From c_employee

Where site_status = ‘P’

And

Select count(1)

From po_vendor_sites_all

	Procedure completes successfully

 The 2nd count should be equal to the first count plus any vendor sites in the tables before the conversion is executed.
	

	21
	Call the Oracle APIs for loading the Employee into the HR module. This API call loads the tables PER_ALL_PEOPLE_F, PER_ALL_ASSIGNMENTS_F, and PER_ADDRESSES. The custom procedure will link the newly created employee to the PO_VENDOR record.

SQL>exec c_hr_emp.create_employee

	Run the procedure to create the vendors.

Run the following 2 queries when it completes.

Select count(1)

From c_employee

Where aoi_status = ‘P’

And

Select count(1)

From per_all_people_f

	Procedure completes successfully

 The 2nd count should be equal to the first count plus employees in the tables before the conversion is executed.
	

	22
	Log into ‘DOE AP and FV Administrator’, navigate to Employees: View Employees.

Query employees.
	Review Employees to see if they have been imported correctly.
	Employees should be loaded into the system
	

A.4
Customer Conversion Test Plan

	Unit Testing Step
	Conversion Step
	Testing Step
	Expected Results
	Actual Results

	1
	Download from PVCS all of the files in the CustomSQL\Conversions\AR Customer directory. Put them into a working directory, for example c:\temp
	Open local directory and verify the files in next column are successfully downloaded
	All files are successfully downloaded
	

	2
	Validate Custom Table creations
	Execute the following query as apps:

SQLc_ar_customer.tab
	Tables created
	

	3
	Validate Custom Sequences creation
	Execute the following query as apps:

SQLc_ar_customer.seq
	Sequences created
	

	4
	Compile the PL/SQL package
	Execute the following script as custom

SQL>@c:\temp\c_ar_customer.pkg
	Package created
	

	5
	Locate the DISCAS conversion extract file for the service center being loaded, and view it using Textpad. Determine how many records are in the dataset by looking at the row count displayed in Textpad.
	From the command line, execute the following script

C:\temp>load_ar_customer.bat

View the resulting log file

	The log file will contain the following:

Table “C_DEBTOR” x rows successfully laoded. Where x is the count of records
	

	6
	Locate the Sql Loader control file in c:\temp\debtor_orders.ctl

	Execute the following script from the command line (assumes Windows OS) and pass appropriate parameters as listed below:

c:\temp\load_ar_customer_orders.bat

Parameter 1: Database User Name

Parameter 2: Database Password

Parameter 3: Database Instance

Parameter 4: PVCS working directory referenced above where files were downloaded

Parameter 5: Organization Id corresponding to Service Center (‘cap’, ‘alo’, ‘oro’)

A sample command line might look like the following: C:\>load_ar_customer_orders.bat custom <password> dev1 c:\temp cap
	View the log file to verify that no errors occurred while loading the data into the staging table c_debtor_orders

	

	7
	create indexes on the appropriate staging tables
	Execute the following script

SQL>@c:\temp\c_ar_customer.idx
	Index created
	

	8
	remove duplicate debtor_code records from the debtors extract data
	In SQLPlus, execute the following SQL packages as CUSTOM:

exec c_ar_customer.check_dup_debtor
	Procedure completed successfully
	

	9
	remove duplicates from the order_num extract data.

	In SQLPlus, execute the following SQL packages as CUSTOM:

exec c_ar_customer.rem_dup_order
	Procedure completed successfully
	

	10
	Populate the required fields necessary to get the Revenue and Receivable CCID values
	Connect to the database as the APPS schema owner

SQL>@c:\temp\cre_ccids.sql

	CCIDs are created in GL_CODE_COMBINATION table.

	

	11
	Ensure that the 3 relevant Customer Interface tables have no records

	Apps.ra_customers_interface_all

Apps.ra_customer_profiles_int_all

Apps.ra_contact_phones_int_all

	Tables are empty. Verified
	

	12
	Execute the package’s main procedure to load the Customer Interface tables, and pass the value ‘CAP’ as a parameter. Since all c_debtors records will have the same org_id value then all will be processed when using ‘CAP’ as the input parameter.
	In SQLPlus, execute the following script as CUSTOM:

exec c_ar_customer.main(‘CAP’)

	After package is finished, check the ‘Status’ field in c_debtors table. Possible statuses are (U)nprocessed, (P)rocessed, and (E)rror. Cross-reference the c_debtors records status of ‘E’ with the number of records in the c_ar_customer_errors table (see below for c_ar_customer_errors table description). For each service center package run, the number of c_ar_customer_errors records should equal the number of c_debtors ‘E’ records. At this point, the number of ‘P’ records in c_debtors indicate how many records will be run through the Customer Interface.

	

	13
	Load customers from Interface tables to Oracle Customer tables
	Log in to STARS as the DOE Receivables Superuser.

Submit a Concurrent Request to run the ‘Customer Interface’

Set the Reciprocal Customer parameter to ‘N’, which is the default value

	After the Request has completed, check for errors. A successful single Customer conversion is indicated by the removal of all records (see NOTE below) in the 3 relevant Customer Interface tables for the particular debtor code.
	

A.5
Purchasing (PO) Conversion Test Plan

	Unit Testing Step
	Conversion Step
	Testing Step
	Expected Results
	Actual Results

	1.0
	Download from PVCS all of the files in the CustomSQL\Conversions\GL directory. Put them into a working directory, for example c:\temp
	Open local directory and verify the files in next column are successfully downloaded
	All files are successfully downloaded
	

	1.1
	Grant Custom access to Apps or Module owner tables/views.
	Execute the following query as apps:

SQLc_po.grt
	Messages returned in SQLplus confirmed that grants succeeded

	

	1.2
	Validate Custom Table creations
	Execute the following query as apps:

SQLc_po.tab
	Tables created
	

	1.3
	Validate Custom Sequences creation
	Execute the following query as apps:

SQLc_po.seq
	Sequences created
	

	1.4
	Validate temporary index creation
	Execute the following query as apps:

SQLc_po_tempindexes.sql
	Index created
	

	1.5
	Validate Custom Views creations
	Execute the following query as apps:

SQLc_po.vw
	Views created
	

	1.6
	Load default site source information from ASCII file into Oracle staging tables
	From DOS prompt run the following

Sqlldr userid= CUSTOM/{password}@{sid} control = c_po_source.ctl log = c_po_source.log bad=c_po_source.bad

Check log and bad files and make sure all records

	log and bad files confirmed that data loaded successfully
	

	1.7
	Load PO data from ASCII file into Oracle staging tables for all service centers
	From DOS prompt run the following

Sqlldr userid= CUSTOM/{password}@{sid} control = c_po_rollup.cap log = c_po_rollup_cap.log bad=c_po_rollup_cap.bad

Sqlldr userid= CUSTOM/{password}@{sid} control = c_po_rollup.alo log = c_po_rollup_alo.log bad=c_po_rollup_alo.bad

Sqlldr userid= CUSTOM/{password}@{sid} control = c_po_rollup.oro log = c_po_rollup_oro.log bad=c_po_rollup_oro.bad

Check log and bad files and make sure all records

	All log and bad files confirmed that data loaded successfully
	

	1.8
	Load PO PCS data from ASCII file into Oracle staging table
	Open c_po_pcs_rollup.cap in textpad and verify the org_id CONSTANT is set to correct integer for the service center. The number should correspond to the organization_id found in the view hr_organization_information_v.

From DOS prompt run the following

Sqlldr userid=CUSTOM/{password}@{sid} control = c_po_pcs_rollup.cap log=c_po_pcs_rollup_cap.log bad=c_po_pcs_rollup_cap.bad

Check log and bad files and make sure all records

	Log and Bad files confirmed successful load
	

	1.9
	Validate Package creation
	From SQLplus as CUSTOM run the following

C_po_convert_rollup.pkg
	Package created
	

	1.10
	Validate Date format
	From SQLplus as CUSTOM run the following

C_po_validate_dates.sql
	To verify the validate script succeeded, in SQLPLUS connect as CUSTOM and verify the following SQL statement runs successfully (unsuccessful query will return message “invalid month”):

SELECT TO_CHAR (TO_DATE (RTRIM (start_date), 'rrmmdd'), 'yyyy/mm/dd hh:mi:ss'), TO_CHAR (TO_DATE (RTRIM (end_date), 'rrmmdd'), 'yyyy/mm/dd hh:mi:ss') FROM c_po_rollup WHERE ROWNUM < 10;

	

	1.11
	Verify Data converted for Transfers
	In SQLPlus, execute the following script as CUSTOM: c_po_xferdata.sql.

	To verify the data script succeeded, in SQLPLUS connect as CUSTOM and run the following SQL statements. Each should return 0 rows.

SELECT * FROM c_po_rollup WHERE fund_type != 'YZ89X0240' AND SUBSTR (bnr_any_level, 1, 6) IN ('YN1902', '820202', '820102', 'YN1901', '820201', '820101');

SELECT * FROM c_po_rollup WHERE SUBSTR (bnr_any_level, 1, 6) IN ('820201', '820101', '820202', '820102');

	

	1.12
	Verify All original PO AFF segments exist in Oracle apps FND tables.

	In SQLPlus, execute the following PLSQL package procedure as CUSTOM: c_po_convert_rollup.verifysegments

	To verify the all segments exist, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_po_errors where err_source=’ SEGMENT VERIFY’;

The count(*) returned should be zero

	

	1.13
	Verify Org_ID is not null
	In SQLPlus, execute the following procedure as CUSTOM: c_po_convert_rollup.validateorgid;

	To verify the data script succeeded, in SQLPLUS connect as CUSTOM and run the following SQL statement. Zero rows should be returned.

SELECT * FROM c_po_rollup a WHERE status != 'ERROR' AND org_id IS NULL;

	

	1.14
	Verify All PO Vendors exist after missing Vendors Created
	In SQLPlus, execute the following PLSQL CUSTOM to find and create missing vendors:

	execute c_po_vendor.format_duns

execute c_po_vendor.validate_data

upd_unique_name.sql

execute c_po_vendor.create_po_vendor

execute c_po_vendor.create_acct_sites

In SQLPlus, execute the following PLSQL CUSTOM to find missing vendors:

Create table c_duns_oblig_bak2 as select * from c_duns_oblig;

Truncate table c_duns_oblig;

execute c_po_convert_rollup.verifyvendors;

To verify no missing vendors, the following SQL statement should return 0 (Zero) rows.

SELECT * FROM c_duns_oblig;

	

	1.15
	Verify PO AFF Data Crosswalked successfully

	In SQLPlus, execute the following SQL script as CUSTOM: c_po_crosswalk.sql

	To verify the procedure executed succeesfully, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select * from c_po_rollup where (segment1 is null or segment2 is null or segment3 is null or segment4 is null or segment5 is null or segment6 is null or segment7 is null or segment8 is null or segment9 is null or segment10 is null) and datasource = 'YE DATA'

Record count should be zero.

	

	1.16
	Verify GL Code Combinations Created
	In SQLPlus, execute the following SQL as CUSTOM: c_po_convert_rollup.createglccid

As DOE GL Superuser run journal=>import=>run for source CONVERT and all group ids.

In SQLPlus, execute the following SQL as CUSTOM: c_po_load_ccid.sql

	To verify all code combinations exist, in SQLPLUS connect as CUSTOM and run the following SQL statement. A count of 0 (Zero) Should be returned:

select count(*) from c_po_rollup where cc_id is null;

	

	1.17
	Verify the PO Open Interface Staging tables are empty
	In SQLPlus, connect as CUSTOM.

Execute the following SQL Statements to clear the PO Interface tables.

Delete from po.po_headers_interface;

Delete from po.po_lines_interface;

Delete from po.po_distributions_interface;

Delete from po.po_interface_errors;

Delete from custom.c_po_errors;

Execute the following SQL Statements to verify the counts within the staging tables (all counts should be zero).

Select Count(*) from po.po_headers_interface;

Select Count(*) from po.po_lines_interface;

Select Count(*) from po.po_distributions_interface;

Select Count(*) from po.po_interface_errors;

Select Count(*) from custom.c_po_errors;
	All scripts completed successfully
	

	1.18
	Verify PCS data is flagged in PO Data
	In SQLPlus, execute the following SQL script as CUSTOM: c_po_pcs.sql

	To verify the procedure executed succeesfully, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_po_rollup where status = 'PCS NEW';

select count(*) from c_po_rollup where SUBSTR(cid, 1, 4) like 'TV_8';
	

	1.19
	Verify PCS PO Data Segment6 Crosswalked successfully

	In SQLPlus, execute the following SQL script as CUSTOM: c_po_pcs_crosswalk.sql

	To verify the procedure executed succeesfully, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_po_pcs_rollup where segment6 is null;

Record count should be zero.

	

	1.20
	Verify PCS Data Load to Staging Table
	In SQLPlus, execute the following SQL packages as CUSTOM:

execute c_po_convert_rollup.pcserrorcheck

	Verify No errors exist in data by, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_po_errors

The count(*) returned should be zero

In SQLPlus, execute the following SQL package as CUSTOM:

execute c_po_convert_rollup.loadpcs

Verify No errors exist in data by, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_po_errors

The count(*) returned should be zero

	

	1.21
	Validate Obligations Staging Table
	In SQLPlus, execute the following SQL packages as CUSTOM:

execute c_po_convert_rollup.validateobs

	Verify No errors exist in data by, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_po_errors

The count(*) returned should be zero

	

	1.22
	Verify Data loaded successfully into PO Open Interface tables
	In SQLPlus, execute the following SQL packages as CUSTOM:

execute po_convert_rollup.main;

	Verify No errors exist in data by, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_po_errors

The count(*) returned should be zero
	

	1.23
	Verify Concurrent Process Import PO’s finishes successfully
	Under ‘DOE PR and PO Entry with Processes’ responsibility Run “Import Standard PO’s “

	Check Log and Output of Request for errors

Verify No errors exist in data by, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) po_interface_errors

The count(*) returned should be zero

	

	1.24
	Drop Temporary Index Creation
	In SQLPlus, execute the following script as CUSTOM: c_po_drop_tempindexes.sql

	In SQLPLUS as Custom, run Select index_name from user_indexes. The following index names should not be displayed:

gl_code_combinations_temp2

gl_code_combinations_temp1

gl_code_combinations_temp3

po_headers_interface_tempidx

po_distrib_inter_tmp_idx1

po_vendors_idx_temp

po_headers_interface_idx_temp1

fnd_descr_flex_column_use_tmp1

fnd_descr_flex_column_use_tmp2

po_requistion_interface_tmp1

po_req_dist_interface_tmp1

	

A.6
Accounts Payable (AP) Conversion Test Plan

	Unit Testing Step
	Conversion Step
	Testing Step
	Expected Results
	Actual Results

	1.0
	Download from PVCS all of the files in the CustomSQL\Conversions\AP directory. Put them into a working directory, for example c:\temp
	Open local directory and verify the files in next column are successfully downloaded
	All files are successfully downloaded
	

	1.1
	Grant Custom access to Apps or Module owner tables/views.
	Execute the following query as apps:

SQLc_ap.grt
	Messages returned in SQLplus confirmed that grants succeeded

	

	1.2
	Validate Custom Table creations
	Execute the following query as apps:

SQLc_ap.tab
	Tables created
	

	1.3
	Validate Custom Sequences creation
	Execute the following query as apps:

SQLc_ap.seq
	Sequences created
	

	1.4
	Validate temporary index creation
	Execute the following query as apps:

SQLc_ap_create_tempindexes.sql
	Index created
	

	1.5
	Validate Package creation
	From SQLplus as CUSTOM run the following

C_ap_convert.pkg
	Package created
	

	1.6
	Verify Receipt Data Integrity
	In SQLPlus, execute the following SQL packages as CUSTOM:

execute ap_convert_rollup.verifyreceipts;

	Verify No errors exist in data by, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_ap_errors

The count(*) returned should be zero
	

	1.7
	Verify Receipt Data loaded successfully into AP Open Interface
	In SQLPlus, execute the following SQL packages as CUSTOM:

exec_ap_convert.Createreceipts(85,null)

	Verify No errors exist in data by, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_ap_errors;

The count(*) returned should be zero
	

	1.8
	Verify Concurrent Process Receiving transaction Processor finishes successfully.

	Under Purchasing Conversion Role, Run “Receiving transaction processor “

Check Log and Output of Request for errors

	Verify No errors exist in data by, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) po_interface_errors

The count(*) returned should be zero

	

	1.9
	Verify Invoice Data Integrity
	In SQLPlus, execute the following SQL packages as CUSTOM:

execute ap_convert_rollup.verifyinvoices;
	Verify No errors exist in data by, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_ap_errors

The count(*) returned should be zero;

	

	1.10
	Verify Invoice Data loaded successfully into AP Open Interface tables.

	In SQLPlus, execute the following SQL packages as CUSTOM:

execute ap_convert_rollup.createinvoices(83,null);

	Verify No errors exist in data by, in SQLPLUS connect as CUSTOM and verify the data, by running the following SQL statement:

select count(*) from c_ap_errors

The count(*) returned should be zero
	

	1.11
	Drop Temporary Index Creation

	In SQLPlus, execute the following script as CUSTOM: c_ap_drop_tempindexes.sql

	In SQLPLUS as Custom, run Select index_name from user_indexes. The following index names should not be displayed:

rcv_transactions_interface_id2
	

	1.12
	Assign group IDs to import data. Adjust group size depending on the number of records.
	In SQLPlus, execute the following SQL as CUSTOM: c_ap_set_invgroupid.sql

	Procedure completed successfully

	

	1.13
	Email DCT/AP team list of group IDs created in previous step
	DCT/AP team would confirm the AP Import run to create invoices

	Should get the confirmation from DCT/AP of invoice creation
	

A.7
Accounts Receivable (AR) Conversion Test Plan

	Unit Testing Step
	Conversion Step
	Testing Step
	Expected Results
	Actual Results

	1
	Download all AR files from PVCS CustomSQL\Conversions\AR directory to a local working directory
	Open local directory and verify the files in next column are successfully downloaded
	c_ar_convert.TAB

c_ar_convert.SEQ

c_ar_convert.GRT

c_ar_crosswalk.SQL

c_argl_crosswalk.SQL

c_argl_crosswalk.SQL

c_argl_sgl_crosswalk.SQL

c_ar_convert.CAC

c_ar_convert.ALO

c_ar_convert.ORO

c_gl_extract.ALO

c_gl_extract.ORO

c_gl_extract.CAC

c_ar_convert.PKG

flar070a_cac.DAT

flar070a_alo.DAT

flar070a_oro.DAT

flar070b_cac.DAT

flar070b_alo.DAT

flar070b_oro.DAT

ARautoinvoice115.SQL

ARautoinvoice_readme.HTML

ARautoinvoice_sample_Output.HTML
	

	2
	Create necessary Tables, Sequences and Grants
	Execute the following command as custom:

SQL> c_ar_convert.tab

SQL> c_ar_convert.seq

SQL> c_ar_convert.grt
	Messages returned in SQLplus confirmed that objects are created
	

	3
	Create main AR Package, c_ar_convert
	Execute the following as APPS

SQL> c_ar_convert.pkg
	Package epec and body created
	

	4
	Load Receivables data from extract files to staging tables

	From DOS prompt run the following

Sqlldr userid=custom/<password>@<SID> control=c_ar_convert.cac log=c_ar_convert_cac.log bad=c_ar_convert_cac.bad

Sqlldr userid=custom/<password>@<SID> control=c_ar_convert.alo log=c_ar_convert_alo.log bad=c_ar_convert_alo.bad

Sqlldr userid=custom/<password>@<SID> control=c_ar_convert.oro log=c_ar_convert_oro.log bad=c_ar_convert_oro.bad

Check all log and bad files and make sure all records are loaded

	All log and bad files confirmed that data loaded successfully
	

	5
	Load GL Advances data from extract files to staging tables

	From DOS prompt run the following

Sqlldr userid=custom/<password>@<SID> control=c_gl_extract.cac log=c_gl_extract_cac.log bad=c_gl_extaract_cac.bad

Sqlldr userid=custom/<password>@<SID> control=c_gl_extract.alo log=c_gl_extract_alo.log bad=c_gl_extract_alo.bad

Sqlldr userid=custom/<password>@<SID> control=c_gl_extract.oro log=c_gl_extract_oro.log bad=c_gl_extract_oro.bad

Check all log and bad files and make sure all records are loaded

	All log and bad files confirmed that data loaded successfully
	

	6
	Verify all Oracle segment exists for all Receivables an Advances to be converted
	From SQL promt execute the following

SQL> exec c_ar_convert.verifysegments

SQL> exec c_ar_convert.verifyAdvsegments
	Create an excel sheet of the values in c_ar_invoice_errors table and forward to DCT to create missing segment values
	

	7
	After DCT has created the missing segments repeat the step above to make sure that x-walked values are created
	Truncate table c_ar_invoice_errors and repeat the steps in above column
	Table c_ar_invoice_errors should be empty this time
	

	8
	Crosswalk legacy segment values to Oracle values
	From SQL prompt execute the following as custom

SQL>c_ar_crosswalk.sql
	Semgments 1 through 10 in c_ar_invoices table should have non-zzzzz values
	

	9
	Crosswalk SGL segment values based on BSC account codes.
	From SQL prompt execute the following as custom

SQL>c_ar_agl_crosswalk.sql
	Rec_sgl and rec_sgl columns in c_ar_invoices table should have non-zzzzz values
	

	10
	Create CCIDs for the segment combinations
	From SQL prompt execute the following as custom

SQL>@c_ar_create_glccid.sql
	While the process is running the count in GL_CODE_COMBINATION table should increase indicating that code combinations are being created
	

	11
	Load Invoices and Credit Memos to AR Interface tables
	From SQL prompt execute the following as APPS

SQL>c_ar_convert.load_ar_invoices(<org_id>
	RA_INTERFACE_LINES_ALL table should be loaded with Invoices and Credit Memos
	

	12
	Verify that the Transaction flexfields are properly setup
	Please see step 2.0 in APP153 of AR Conversion document. The document can be downloaded from PVCS CustomSQL\Conversions\AR directory
	Directions in APP153 were followed to create Transaction flexfields
	

	13
	Verify that the Autoinvoie Source ‘DISCAS CONVERSION’ is properly setup
	Please see step 3.0 in APP153 of AR Conversion document. The document can be downloaded from PVCS CustomSQL\Conversions\AR directory
	Directions in APP153 were followed to create Autoinovice Source called ‘DISCAS CONVERSION’
	

	14
	Verify that the Autoinvoie Source ‘ADVANCES CONVERSION’ is properly setup
	Please see step 4.0 in APP153 of AR Conversion document. The document can be downloaded from PVCS CustomSQL\Conversions\AR directory
	Directions in APP153 were followed to create Autoinovice Source called ‘ADVANCES CONVERSION’
	

	15
	Run Autoinvoice to load Receivables data from interface tables to Oracle Receivables
	Please see step 5.0 in APP153 of AR Conversion document. The document can be downloaded from PVCS CustomSQL\Conversions\AR directory
	Log and Output files were reviewed after the concurrent program completed. Receivable transactions are created in Oracle AR from interface tables
	

	16
	Close converted Finance Charges by creating Credit Memos
	Please see step 6.0 in APP153 of AR Conversion document. The document can be downloaded from PVCS CustomSQL\Conversions\AR directory
	Log and Output files were reviewed after the concurrent program completed. Credit Memos are successfully created to close Finance Charges
	

	17
	Now process GL Advances data from staging tables. Crosswalk legacy segment values to Oracle values
	From SQL prompt execute the following

SQL>@c_argl_crosswalk.sql

	Segment values are x-walked since the missing segments were created in previous step
	

	18
	Crosswalk SGL segment values based on BSC codes
	From SQL prompt execute the following

SQL>@c_argl_sgl_crosswalk.sql
	SGL segments are created.
	

	19
	Create CCIDs for segment combinations
	From SQL prompt execute the following

SQL>@c_ar_create_glccid.sql
	Code Combinations are created.
	

	20
	Set the profile options
	As APPS run the following

SQL>exec dbms_application_info.set_client_info(<org_id>)
	Profile Option is setup
	

	21
	Create On-Account and Unidentified Cash Receipts from C_GL_ROLLUP table. This step also loads invoices for 39xx debit balances to AR Interface table
	From SQL prompt execute the following

SQL>exec c_ar_convert.load_gl_receipts(<org_id>)

	At completion, the number of Receipts and to-be created invoices are returned
	

	22
	Load invoices for 39xx debit balances from interface table to Oracle AR
	Please see step 7.9 in APP153 of AR Conversion document. The document can be downloaded from PVCS CustomSQL\Conversions\AR directory
	Log and Output files were reviewed after the concurrent program completed. Receivable transactions are created in Oracle AR from interface tables
	

A.8
Fixed Assets (FA) Conversion Test Plan

	Unit Testing Step
	Conversion Step
	Testing Step
	Expected Results
	Actual Results

	1
	Verify the values of four ‘default’ cost centers, stored in constants at the top of the c_fa_conv package.

The values store a default cost center for field offices TC, OH, OR, and FT, and are used to determine Reporting Entity value.
	Verify with the functional team that the following values are valid:

const_TC_costcenter := 'TC3I';

const_OH_costcenter := 'OH00'; const_OR_costcenter := 'Q1AA';

const_FT_costcenter := 'FTDA';
	Values are the same, if not change the constants in the c_fa_conv package.
	

	2
	Run Depreciation up until the period before the period we are going to implement in.

	Log into ‘DOE FA Superuser’, navigate to Run Depreciation.

Run Depreciation until the period that includes the const_Sep1_dt. For example, for UAT 1, const_Sep1_dt was 4/1/2005, so ‘Run Depreciation’ needed to be run through the March 2005 period. Make sure to ‘Close Period’ for each run of depreciation.

	Verify request logs that the depreciation completed each period successfully.
	

	3
	Ensure that the view custom.c_po_source_defaults_v exists and is populated with data

	Run the following query to verify:

select count(*) from custom.c_po_source_defaults_v
	Returns ‘43’
	

	4
	Ensure that the table custom.c_load_values exists and is populated with data

	Run the following query to verify:

select count(*) from custom.c_load_values
	Returns ‘43’
	

	5
	Download from PVCS all of the files in the CustomSQL\Conversions\FA directory. Put them into a working directory, for example c:\temp
	On your computer, open windows explorer. Navigate to c:\temp, verify files are in the directory
	All the files from the PVCS directory are in the directory c:\temp:

assets.alo

assets.cap

assets.oro

c_fa_conv.grt

c_fa_conv.pkg

c_fa_conv.seq

c_fa_conv.tab

c_fa_missing_segs.sql

fa_locs.ctl

load_assets.bat

load_fa_locs.bat

uat_fa_errors.sql

upd_fa_alloterr.sql

upd_fa_dummy_orcl_val.sql

upd_status_massadd_err.sql
	

	6
	Run the following script to create the staging tables

As custom, execute the following script:

SQL>@c:\temp\c_fa_conv.tab
	Execute the following to verify all 4 tables were created:

SQL> desc c_fa_stage

SQL> desc c_fa_locs

SQL> desc c_fa_errors
	All 3 tables were described verifying that they were created.
	

	7
	Run the following script to create sequences.

As custom, execute the following script:

SQL>@c:\temp\ c_fa_conv.seq
	Execute the following to verify 2 sequences were created:

SQL> select c_fa_stage_s.nextval from dual

SQL> select c_fa_errors_s.nextval from dual
	Values were returned for both calls

First time run, both of these should return = ‘1’.
	

	8
	Run the following script to grant permissions to apps for the custom tables

As apps, execute the following script:

SQL>@c:\temp\c_fa_conv.grt
	Execute the following query as apps:

SQL> select count(*)

from all_tab_privs

where table_name in (‘c_fa_stage’,’c_fa_locs’,’c_fa_errors’,’c_fa_stage_s’,’c_fa_errors_s’,’c_po_source_defaults_v’)
	‘12’ should be returned
	1.8.4.

	9
	Run the following script to compile the package

As apps, execute the following script:

SQL>@c:\temp\c_fa_conv.pkg
	Execute the following query as apps:

SQL> select distinct(status)

from dba_objects

where object_name = 'C_FA_CONV’
and owner = 'APPS'

	Should return a value of ‘VALID’
	

	10
	Make sure that the names of the PNE asset extract data files are flfa292_<org_id>.dat where <org_id> represents the service center (domain values are ‘cap’, ‘alo’, or ‘oro’) and fa_locs.csv
	On your computer, open windows explorer. Navigate to c:\temp\sourcedata. Verify the files.

	There should be 4 files:

flfa292_alo.dat

flfa292_cap.dat

flfa292_oro.dat

fa_locs.csv
	

	11
	Ensure that there exists a ‘logs’ folder under the working directory (c:\temp\logs)
	On your computer, open windows explorer. Navigate to c:\temp\logs, verify directory
	Directory exists
	

	12
	Stage the FA locations data files.

Run the following command line:

C:\temp> load_fa_locs.bat custom <password> <instance> c:\temp

	Script generates a log file called c:\temp\logs\fa_locs.log
	Verify that no errors occurred while loading the data into the staging tables from the log file

Near the bottom of the log file verify that it says ‘0 rows not loaded due to data errors’
	

	13
	Stage the PNE asset data files.

Run the following command line 3 times:

C:\temp> load_assetsr.bat custom <password> <instance> c:\temp <org_id_suffix>

The org_id_suffix is cap, oro, and alo.

	Script generates a log file called c:\temp\logs\assets_<org_id_suffix>.log
	Verify that no errors occurred while loading the data into the staging tables from the log file

Near the bottom of the log file verify that it says ‘0 rows not loaded due to data errors’

WHEN clauses’.
	

	14

	If it is necessary to generate dummy AFF segment values then execute the following scripts/steps as CUSTOM

SQL>@c:\temp\upd_fa_alloterr.sql

SQL>@c:\temp\c_fa_missing_segs.sql

Logged in to the application as DOE GL Superuser, run the request Load AFF Values (Custom) ten times, once for each AFF segment value (1 thru 10)

Logged in to the application as DOE GL Superuser, run the request Load AFF Mapping (Custom) ten times, once for each AFF segment value (1 thru 10)

SQL>execute dbms_mview.refresh('c_aff_crosswalk_mv','C')

SQL>@c:\temp\upd_fa_dummy_orcl_val.sql

	If it is necessary run the steps to the left. This will create values in the crosswalk table. To verify this, check the c_fa_stage table to see if any segment information is null
	Procedure completes successfully.

If there are values missing, then run the steps to the left. The procedures should complete successfully. If there is none missing, you don’t need to run the steps.
	

	15
	Update the staging table status field, and append Inventory Org to CID if necessary

SQL>exec c_fa_conv.upd_cid_and_status

	Run the procedure
	Procedure completes successfully
	

	16
	Rollup Assets by CID, Asset_Type, and Allottee

SQL>exec c_fa_conv.roll_cid

	Run the procedure
	Procedure completes successfully
	

	17
	Initially populate the FA_MASS_ADDITIONS table

SQL>exec c_fa_conv.cre_mass_additions

	Run the procedure
	Procedure completes successfully
	

	18
	Create new CCID’s for Payables and Expense accounts if the CCID values were not preexisting during the initial FA_MASS_ADDITIONS load

SQL>exec c_fa_conv.cre_new_ccids

	Run the procedure
	Procedure completes successfully
	

	19
	Populate FA_MASS_ADDITIONS with any new CCID values created in the previous step

SQL>exec c_fa_conv.cre_mass_additions

	Run the procedure
	Procedure completes successfully
	

	20
	Run Post Mass Additions from the Applications.

Submit request to run the ‘Mass Additions Post’ program (Mass Additions Posting Report is also included in this request set). Enter ‘DOE FA BOOK’ as the input parameter.

	Log into ‘DOE FA Superuser’, navigate to Mass Additions – Post Mass Additions.

Run ‘Mass Additions Post’ with ‘DOE FA BOOK’.
	Verify request logs that the post mass additions completed.

	

	21
	When request is finished, check the Request Log for possible errors that occurred. These errors will also be indicated in FA_MASS_ADDITIONS by the posting_status remaining as ‘POST’. Execute the following script as CUSTOM to flag these errors in the staging table for later use.

SQL>@c:\temp\upd_status_massadd_err.sql

	View the logs. If there are errors, run the script to flag the errors in the staging table.
	Script completes successfully
	

	22
	Log into ‘DOE FA Superuser’, navigate to Assets: Asset Workbench

Query assets by book, enter ‘DOE FA BOOK’, click Find
	Review Assets to see if they have been imported correctly.
	Assets should be loaded into the system
	

	23
	After the initial attempt to load all assets, there may be some errors, marked as ‘M’ in the staging table at this point. If the user wants to fix the errors and reprocess the Mass Additions, follow these steps:

· As APPS, truncate FA_MASS_ADDITIONS table (ensure that the existing data was loaded only via FA conversion)

· Login to sql plus as CUSTOM

· Correct any errors in the staging table records marked as ‘M’

· Update any corrected c_fa_stage records, set the conv_status to ‘U’ (instead of ‘M’)

· Repopulate FA_MASS_ADDITIONS

· Login to sql plus as APPS

· SQL>exec c_fa_conv.cre_mass_additions

· Submit Mass Additions Post request the same as above

	If the end users decide not to load assets manually that fail, then the steps to the left should be followed.
	Assets will be loaded into the system correctly.
	

[image: image1.jpg]

Last saved by Bryan Long
Page 1
12/1/2004

